様々な種類のデータに対して様々な統計量が数理的に考察されてきました。自然言語のテキストに対しては著者や言語種、ジャンルなど、その種類を量的に峻別する統計量とは何かが考えられてきました。例えば統計学者Yuleが提案したKがその一つで、これはRenyiの2次エントロピーと等価です。YuleのKはデータ量に依存しない統計量となっており、データの性質を安定的に表す統計量となっています。研究室では、データのスケーリング則との関連をふまえ、このような統計量として何があるかを探究しています。 参考文献
言語
「_月_日_時より_スタート!」「regard _ as _」など、穴空きの定型表現は文書には頻出し、特にツイートやブログでは多用されています。穴空きの定型表現は文法導出に相当し、難しい問題の一つです。研究室では、穴空きの定型表現を最小オートマトンを作成して抽出することを試みています。最小オートマトンは、できる限り重複を重ね合わせた構造を作ります。重複した部分は定型部分、そうでない部分は穴部分として捉えることによって穴空きの定型表現を得ます。基礎的な検証を経て、深層学習で実装し、SNSからのパターン抽出など応用を考えています。 参考文献
生成モデルは、工学上の一つ重要なテーマで、ある系のサンプルを、擬似的に実現する方式のことです。生成モデルを探求することは、系の本質を捉え、それを実現する学習器の能力を吟味し、その構成を再考することにつながります。研究室では、マルコフモデル、文法的モデル、Simon生成過程など既存のモデルに加え、複雑系ネットワーク上のランダムウォーク、AutoencoderやAdversarialなど深層学習生成モデルも含め、複雑系を包括的に再現する試みを行っています。 参考文献
深層学習はデータのどのような側面を捉え、または捉えきれないのでしょうか。 複雑系としての記号の系にはさまざまな経験則が成り立つことが知られています。 研究室では、深層学習が生成する擬似データにどの程度の冪乗則が成り立っているか検証し、 従来の観点からは異なる観点から深層学習を吟味し、深層学習の改良につなげることを考えています。 たとえば右図は、文書は成り立つ長相関が文字レベル深層言語モデルでは成立しないことを示しています。 このような議論は自然言語以外の系、例えば金融市場にも適用することができます。 参考文献
機械学習では単語など文書の要素をベクトルとして表現しなければならず、それを埋め込み表現といいます。 現在の埋め込み表現は、線形ベクトル空間の中に単語をベクトルとして表現しますが、線形空間では、 多義性など単語の持つ非線形な特性を表現することができません。 このため、既存のベクトル表現に代わる数理的な表現を研究しています。 試みとして、FIRE という関数に基づく表現を構築しました。FIREはBERTと同等の性能を有し、単語の意味の数の推定することにおいては、BERTよりも優れている埋め込み表現です。 参考文献